Üyelerimizin Albüm Fotoğrafları

  1. Ataşehir

Tork, Beygir gücü, Motor Deviri, Hızlanma Hesaplamaları

Konu, 'Teknik Döküman ve Arşivler' kısmında byalfa tarafından paylaşıldı.

  1. byalfa

    byalfa SCW Üyesi

    31
    6
    8
    [h=5][/h]
    TORK

    Torkun önce teknik tanımını yapalım: Tork bir nesneye etki eden kuvvetin o nesnenin ne kadar dönmesine yol açtığının ölçüsüdür. Nesne bir aks etrafında dönmektedir. Bu aksa biz pivot noktası (O), kuvvetin etki ettiği noktayla pivot noktası arasındaki mesafeye de Moment Kolu (r) diyoruz. Moment kolu aynı zamanda bir vektördür. Dolayısıyla tork, mesafe vektörüyle kuvvet vektörünün kesişme ürünüdür ve aralarındaki açının sinüsüyle orantılıdır., Formüle edersek: T = F x r = rF.Sin(Q). Tork Q açısının 90 derece olduğu noktada maksimumdur (sin = 1). Bu torkun teknik açıklaması.


    [​IMG]

    Biraz da torku somutlaştırarak anlatmaya çalışalım; torkun ne olduğunu anlayabilmek için öncelikle “kuvvet”in ne olduğunu bilmemiz gerekir. Kuvvet, fizikte kabaca şöyle tanımlıdır: “Hareket eden bir cismi durduran, duran bir cismi hareket ettiren, cisimlerin şekil, yön ve doğrultularını değiştiren etkiye Kuvvet denir.”
    Demek ki kuvvet ile hareket arasında doğrudan bir ilişki var. Nesnelerin eylemsizliği (momentumu) vardır, üzerlerine bir kuvvet etkimedikçe, pozisyonlarını korumaya eğimlidirler. Duruyorsa durmaya, hareket halindeyse harekete devam etme eğilimi her nesnenin doğasında gizlidir. Öyleyse örneğin duran bir masa dışardan bir kuvvet etki etmediği sürece kendiliğinden hareket etmeyecektir. Esasen masa nötr bir konumda değildir, üzerine etki eden kütle çekiminin etkisi altındadır. Buna rağmen yatay doğrultuda herhangi bir kuvvetin etkisi altında olmadığı için hareketsiz durmaktadır. Masaya bir de yatay doğrultuda bir kuvvet etkirse ve bu kuvvet masa ile zemin arasındaki sürtünme direncinden büyükse masamız hareket edecektir. Kısaca kuvvet bu; duran cisimleri hareket ettiren, hareket halinde olanları da duduran veya yavaşlatan etki... Dikkat ederseniz kuvvet tanımının içinde zaman ölçeği yok. Yani kuvvet tanımı bize hareketin zaman içindeki değişimini vermiyor. Bunu ileride daha ayrıntılı tartışacağız. Kaldığımız yere dönersek, kuvvet, büyüklüğü ve doğrultusu olan bir etki yani vektörel bir büyüklüktür. Kuvvet belli bir yön ve doğrultuda etkir. Bu yön doğrusal ise lineer bir kuvvetten, dairesel ise açısal/radyal bir kuvvetten söz ederiz çünkü kendi ekseni üzerinde hareket eden cisimlerin açısal momentumları vardır, söz konusu açısal momentumu değiştirecek olan şey de kuvvettir. Lineer vektörel kuvvete örnek yerçekimi, açısal/radyal vektörel kuvvete örnek olaraksa merkezkaç kuvveti verilebilir. Lineer vekötrel kuvvetin ölçüsü kg veya Newtondur. Yaklaşık 9,81 Newton 1 Kg kuvvete denk gelir. 1 kg ağırlığındaki bir cismi yerden kaldırmak için 1 kg’ın biraz üzerinde bir kuvvete ihtiyaç duyarız, aynı şekilde 1200 kg ağırlığındaki bir otomobili düz bir satıhta vites boştayken hareket ettirebilmemiz için yaklaşık 40-50 kg civarında bir lineer kuvvet uygulamamız gerekir. Yani bir nesneyi, iterken, çekerken ya da kaldırırken vektörü lineer bir kuvvete ihtiyaç duyarız.

    Peki ya dairesel bir nesneyi kendi ekseni etrafında döndürmek istersek? İşte burda tork kavramı devreye girer...

    Bir nesneyi kendi ekseni etrafında döndürmeye yarayan kuvvete tork ya da dönme momenti diyoruz. Tork, bir başka deyişle dönme momenti, Açısal Momentum kavramıyla iç içedir. Bir cismin çizgisel momentum vektörünün her hangi bir noktaya göre dönmesine açısal momentum denir. Cismin çizgisel momentum vektörü P,bu vektörü dönme noktasına bağlayan konum vektörü Y ise (Y ve P bir birine diktir), cismin açısal momentum vektörü J= Y x P olur. Açısal momentum zamana göre değişmiyor ve sabit kalıyorsa buna açısal momentumun korunumu denir (dJ/dt=sabittir). Sistemde açısal momentumun zamana göre değişimi aynı zamanda dönme momentini (tork) verir,Tork=dJ/dt.

    Yukarıdaki bir başka akademik tanımdan anlaşılacağı üzere, torku bulabilmemiz için dönme eksenine dik etki eden kuvvet ile dönme eksenine olan mesafeyi çaRPMamız gerekir. Bunu aşağıdaki şekilde görebiliriz:


    [​IMG]

    Bir kuvvet türü olarak torkun ölçüsü Newton-Metre ya da Kg-Metre cinsindendir (metrik sistemde). Bunu bir örnek vererek gösterelim: Çok büyük bir somun düşünün, bu somunu uzunluğu 1 metre olan bir anahtarla açmak istiyoruz. Anahtarın elimizdeki ucuna uyguladığımız kuvvet 20 kg olsun. Bu durumda somuna uygulanan tork 20 kgm (20 kg x 1 m) olacaktır. Anahtarın uzunluğunu 2 katına çıkarır ama kuvveti yarıya indirirsek (10 kg x 2 m ) yine 20 kgm’lik bir tork elde ederiz. Ya da anahtar uzunluğunu ½ metreye düşürelim, aynı torku elde etmek için bu durumda anahtar ucuna uygulamamız gereken kuvvet 40 kg olacaktır (40 x ½ = 20 kgm). Görüldüğü üzere esasen bir manivela etkisinden söz ediyoruz. Yani tork dediğimiz şeyi sadece manivela kolunun uzunluğunu değiştirerek bile artırıp azaltabiliyoruz. Bu önemli çünkü transmisyon dediğimiz sistemin yaptığı tam da budur. Birinin üzerinde 40 diş bulanan bir dişli üzerinde 20 diş olan bir başka dişliyi çevirdiğinde de olan şey budur. 40 dişe sahip dişli 100 NM tork taşıyor olsun, dönme hızı da 100 RPM olsun, Bu durumda 20 dişe sahip dişli diğeri 1 tur döndüğünde 2 tur dönecek ama torku yarıya yani 50 NM’ye inecektir. Buradan çıkaracağımız sonuç, torkun dişliler ve/veya manivela kolu uzunluğu ile oynayarak artırılıp azaltılabileceğidir. Transmisyon birbirini döndüren farklı çaplarda bir dizi dişli grubundan oluşur ve görevi seçilen vitese göre torku artırıp azaltmaktır. Vites kutusu bir tür tork çarpanı işlevi görür. Vites kutuları forumda bir başka topik konusu edilebileceği için daha fazla üzerlerine yazmaya gerek duymuyorum.

    Tork kısaca bu; bir mili kendi ekseni çevresinde döndüren kuvvet, bildiğiniz kuvvet yani. lineer kuvvetten tek farkı döndürme yönünün açısal olması ve bu nedenle eksen merkezi ile eksen çeperi arasındaki mesafenin (manivela/moment kolunun) hesaba dahil edilmesi zorunluluğu...

    Bir vidayı sıkarken, bir civatayı sıkar veya gevşetirken uyguladığımız kuvvet torkun ta kendisidir. En yalın tork tanımı da budur.

    Motorlar da tork üretirler. Piston üzerine basınç uygulayan genleşme gazları bu basıncı biyel kolu aracılığı ile pistondan krank mili jurnaline iletir. Jurnal ile krank aksı arasındaki mesafe moment koludur. Baştaki açıklamaları hatırlarsak motorda nasıl tork üretildiğini de idrak etmiş olacağız. Motor torku “anlık tork” ve “averaj tork” olarak ikiye ayrılır. Kataloglarda verilen tork averaj torktur. Motorda üretilen tork şanzıman ve diferansiyelden geçerek tekerleklere iletilir. Bu esnada şanzıman ve diferansiyeldeki dişli oranları mertebesinde katlanır, yani artar. Bununla ilgili detaylı bilgi “TORK VE RPM İLİŞKİSİ” başlığı altında verilmiştir.

    İŞ

    İş yukarıda da görmüştük, esasen hareket yani nesnenin yer değiştirmesi olarak değerlendirilebilir. Bir İŞ’in olabilmesi için
    1. yer değiştirme miktarına,
    2. yer değiştirmede harcanan kuvvete ihtiyacımız vardır.
    Bu da w = f x d formülüyle ifade edilir. İş yapabilmek için kuvvet harcamak yetmez, yer değiştirme zorunlu şarttır. Örneğin bir vidayı 10 kgm torkla sıkalım, vida bir noktada iyice sıkıştıktan sonra dönmesini durduracaktır. Bu noktada biz hala aynı kuvveti uygulamaya devam etsek bile, vida artık dönmeyeceği için iş yapmış sayılmayız. Başka bir örnek: Herhangi bir duvarı 50 kg kuvvetle itelim, ne olur? Hiç bir şey olmaz, yaptığımız iş kuvvet harcadığımız halde 0’dır. Ama aynı 50 kg’lık kuvveti bir arabayı itmekte kullanırsak ve arabayı mesela 20 m itersek, iş yapmış oluruz ve yaptığımız işin miktarı 50 kg x 20 m = 100 kgm olur. İŞ kavramını niçin anlatıyoruz? Çünkü beygir gücü iş yapma hızıdır, beygir gücünü anlatırken, İŞ kavramına ihtiyaımız olacak. Bir elektirik motoru tork üretir, çalışır durumda bir elektirk motorunun milini sabitlenmiş bir mengenede sıkıştırırsak elektrik motoru mil dönmediği halde tork üretmeye devam eder ama mil dönmediği için üretilen tork mesela 200 NM olsa bile yapılan iş 0’dır. Bunu da bir yere not edelim.

    BEYGİR GÜCÜ

    Torku öğrendik, beygirgücü ne o halde? Beygirgücünü öğrenmeden önce fizikteki “güç” kavramına bir açıklık getirmemiz gerekiyor. Türkçemiz günlük kullanımda “güç” ve “kuvvet” arasında pek bir ayrım gözetmiyor ama fizikte bu iki terim farklı kavramları karşılamak üzere kullanılıyor. Kalan kısımda da bu ayrıma özenle dikkat edeceğiz. Kuvveti yukarıda girişte tanımladık, tork da bir kuvvet türüydü, bunu gördük. Güç için de tanımlar muhtelif. En bilinen tanımlardan başlayalım isterseniz:

    Güç aşağıdakilerin hepsidir:
    1. Birim zamanda üretilen veya harcanan enerji miktarı yani enerji dönüşüm hızıdır.
    2. Birim zamanda yapaılan İŞ miktarı yani İŞ yapma hızıdır.
    3. Kuvvetin yineleme oranı ya da hızıdır (hangi hızda kuvvet ürretiyorsunuz).
    4. Kinetik enerjideki değişim oranı/hızıdır.

    Gücün ölçüsü metrik sistemde jul/saniye, bir başka deyişle Watt’dır. Genel formulü P = F x d /T ya da W/T’dir. Burada P: güç, F: kuvvet, d: mesafe, T: zaman ve W: iş’tir. Enerji taşıyan ve bu enerjiyi kullanan herşeyin gücü vardır; bir ampulün, bir matkabın, bir insanın, bir arabanın, bir atın...

    Bu gücü Watt cinsinden ölçebileceğimiz gibi başka birimlerle de ölçebiliriz. Beygirgücü mesela motorların gücünü ölçme birimidir ve kolayca Watt cinsine çevrilebilir. Beygirgücü yukarıda tanımlanan güç ile aynı şeydir, sadece spesifik bir alandaki kullanımına işaret eder.

    Beygirgücü kavramını İngiliz mucit James Watt ortaya attı. İcat ettiği buhar makinesini kömür madenlerine satmak isterken, makinenin gücünü, o dönemde İngiliz madenlerinde yaygın olarak kullanılan pony cinsi atların gücüyle karşılaştırmak istedi. Böyle yaparak maden sahiplerini ikna etmek istiyordu ancak kullandığı değişkenler keyfidir ve gerçekten bir atın gücünü tam olarak ölçüp ölçmediği belirsizdir.

    Watt, madenlerde yaptığı gözlemlerde, bir atın, 12 feet (3,66 m) uzunluğunda bir çıkrık koluna bağlı 180 lb’lik ( 82 kg) bir kömür kovasını dakikada 2,4 kez (144/saat) dönerek maden ocağından çıkardığını fark etti. Yukarıda verdiğimiz güç formülüne bu değerleri koyarsak P = W/T veya F x d /t olduğuna göre P = 180 x 2,4 x 2 pi x 12) 1 dakika = 32,572 lbf/dakika sonucu buldu. Bunu 33.000 lbf’a yuvarladı. Bu da 550 lbf/saniye yapar. Bunun metrik sistemdeki karşılığı 75 m/s ya da 735 W civarıdır. Kısacası 75 kg’lık bir ağırlığı 1 saniyede 1 metre yukarı kaldıran güce 1 beygir gücü diyoruz. Bir motorun beygir gücü genellikle hesaplanır çünkü nihayetinde beygir gücü soyut matematiksel bir kavramdır, bir ekstrapolasyondur. Beygir gücü yaygın olarak, ölçülen torktan hesaplanır. Bunun imoeriyal formülü de şudur: HP = Tork x RPM /5252. Paydadaki sayı 550 lb-ft/s değerinin radyan cinsinden ifade edilmesinin bir sonucu olarak formülde yer almaktadır. Unutmayın, formül imperyaldir, NM cinsinden tork kullanabilmek için metrik sisteme çevrilmesi gerekir. Su tipi dinamometreler beygir gücünü hesaplamayıp doğrudan ölçerler. Ölçüm yöntemi su sıcaklığındaki artışın ölçülmesine dayanır (enerji salınım hızı). Beygir gücü başka pek çok yöntemle de hesaplanabilir. Ama bu hesapların tamamına yakını teoriktir, pratikten hesaplama için yukarıdaki formül kullanılır. Aşağıda bazı tipik teorik beygir gücü hesaplama yöntemleri verilmiştir:
    HP = Süpap lifti /500 x Hacim (imperyal)
    HP = ((Hız/234)^3) x Ağırlık (imperyal)
    HP = BMEP x Hacim x RPM /792 (imperyal)
    HP = Jul / saniye / 0,735 (akselerasyondan hesaplama)
    HP = TE x Yakıt Akışı (PPH) x 7473

    Özetler ve begirgücünü herkesin anlayabileceği bir perspektife koymak istersek; beygirgücü için motor torkunun yineleme hızıdır diyebiliriz. Yani motor ne sıklıkta tork üretiyor, bunu beygirgücü ile ölçüyoruz. Bu nedenle tork ölçümünde zaman komponenti yok ama beygirgücü ölçümünde zaman komponenti vardır. Beygirgücü motorun zamana karşı yaptığı işin ölçüsüdür. Birim zamanda motorumuz ne kadar iş yapmış bunu zamanla ölçüyoruz.

    Peki iş ne? İş yer değiştirmedir. Enerjiyi kuvvete dönüştürerek bir nesnenin yerini değiştirebiliriz yani onu hareket ettiririz. Yer değiştirme için bir kuvvet harcamamız ve bir mesafe katetmemiz gerekir. İş bu ikisinin çarpımıdır (kuvvet x yol). Yol 0’ken yani hareket etmiyorken, kuvvet harcasak bile iş yapmış olmayız; kuvvet X, yol 0 ise 0X = 0 olur. İşi anladık; motorumuz ne iş yapar?.. Aracı A noktasından B noktasına götürür. A noktasından B noktasına kuvvet (tork) kullanarak götürür. Peki ne kadar zamanda götürür? Onu da beygirgücü ile ölçeriz ve bu yüzden bir aracın SON HIZInın diğer değişkenleri sabit varsayarsak tek ölçüsü beygir gücüdür.

    RPM

    RPM dakikada dönüş hızı ya da miktarının İngilizcedeki karşılığı. Fizikteki karşılığı alınan mesafedir (yol). Bir mil yol alır mı? Evet, üzerine işaretlediğimiz bir nokta 1 turda 2pi radyan kadar yol almaktadır. Milin çapı 1 santim ise ve mesela dakikada 1000 devir yapıyorsa alınan yol 1 x 2 x 3,14 x 1000 = 6,28 metre olacaktır. RPM böylece bize 1 dakikada alınan yolu vermektedir.

    TORK VE RPM İLİŞKİSİ

    Tork ve RPM bir madalyonun 2 yüzü gibidirler. Biri olmadan diğeri anlamsızdır. RPM olmadan tork hiç bir işe yaramayan bir rakamdan ibarettir. Tork ve RPM aynı büyüklüğün farklı yansımalarından başka şey değildirler. Tork ve RPM transmisyon aracılığı ile birbiriyle değiştirilebilir yani istediğimiz miktarda torku RPM’e veya tersine çevirebiliriz. Bunu bize transmisyon sağlar. Örneğin yarıçapı 1 metre olan bir makara düşünün, bu makaraya 6280 metre halat sarılı. Makaramız 100 kgm gücünde ve dakikada 1000 RPM devre sahip bir motor tarafından döndürülüyor olsun. Makarayı 6280 m yukarıya çıkaralım ve ucuna 100 kg’lık bir ağırlık bağlayalım. Motorumuz 100 kgm torka ve 1000 RPM’e sahip olduğu için bu 100 kg’lık ağırlığı 1 dakikada 6280 metre yukarıya çıkaracaktır. Motorumuzun beygir gücü (100 x 1000 /728) 137 HP’dir. Evet 100 kgm torka ve 1000 RPM’e sahip bir motorla 100 kg’lık ağırlığı 1 dakikada 6280 m yukarıya çıkardık ama bu kadar beklemek istemiyoruz, şu işi ½ dakikada halledelim diyoruz. Bu durumda yine 100 kgm torka ama 2000 RPM devre sahip bir motor monte ediyoruz makaramıza. Şimdi yine 100 kg’lık bir ağırlığı 6280 m yukarıya çıkarıyoruz ama sadece yarım dakikada. Tork değişmedi, RPM iki katına çıktı, süremiz yarıya indi. Bu motorun beygir gücü de 100 x 2000 / 728 = 274 HP. Yani ilk motorun iki katı. Tork değişmediği halde beygir gücünü iki katına çıkardığımızda alınan süreyi yarıya indiriyoruz, buraya DİKKAT (!). Peki makaraya 50 kgm torka ve 4000 RPM devre sahip bir motor bağlarsak ne olur? Ağırlık 100 kg > 50 kgm tork olduğu için motorumuz bu ağırlığı kaldıramayacaktır. Elimizde ne var? Bize yetmeyen 50 kgm tork ve ihtiyacımızın 2 katı RPM var. İhtiyaç fazlası bu RPM’i ihtiyacımız olan torka çeviremez miyiz? Evet, bunu makara ile motor mili arasına hızı yarıya düşüren (2:1) bir çevre uzunluğuna sahip bir dişli seti ile yapabiliriz. Bu durumda RPM 2000’e düşer, tork 100 kgm’ye çıkar beygir gücü değişmez ( 50 x 4000 /728 = 274 HP). Gördüğünüz gibi beygir güçleri aynı, tork ve RPM’leri farklı 2 motordan 50 kgm torka sahip olanı ağırlığı doğrudan kaldıramadı ama araya 2:1 oranlı bir transmisyon koyduğumuzda 2 motor yalnızca beygirgücü açısından değil her açıdan eşitlendi. İşte transmisyon, torka ihtiyacımız olduğunda fazla RPM’i torka, RPM’e ihtiyacımız olduğunda da fazla torku RPM’e çevirir. Tork ve RPM birbirine dönüşebilen fiziksel büyüklüklerdir. Madalyonumuz beygir gücüdür, bu madalyonun bir yüzü tork, diğer yüzü RPM’dir. Bu nedenle, 8000 RPM’de 50 NM tork üreten bir motorla 2000 RPM’de 200 NM tork üreten bir motoru 4:1’lik basit bir transmisyon kolayca eşitler. Daha fazla RPM’e neden ihtiyaç duyarsınız? Daha hızlı gitmek için; Daha fazla torka neden ihtiyaç duyarsınız? Daha fazla yük taşımak/çekmek için... Transmisyon size ne istiyorsanız onu verir: Daha fazla RPM veya daha fazla tork.

    AKSELERASYON/DESELERASYON (HIZLANMA/YAVAŞLAMA)
    Birim zamanda hızdaki değişimdir. Hızdaki artış bizi daha çok ilgilendirdiği için akselerasyona kabaca hızdaki artış diyebiliriz. Türkçedeki karşılığı ivme veya ivmelenmedir. Hızdaki artış sabit olabileceği gibi değişken de olabilir. Biz hızdaki artışla yani hızlanmayla ilgiliyiz. Hızlanma belirli bir zaman periyodunda hız kazanmadır, hız artışıdır. Birim zamanda mesela X hızından 2X hızına çıkmaktır. Newton’un ikinci yasası bize Akselerasyonun formülünü verir: A (akselerasyon) = F (kuvvet) / M (kütle).

    TORK AKSELERASYON İLİŞKİSİ

    Evet, artık onca laftan sonra meselenin özüne geldik: Bir otomobili hızlandıran tork mudur, beygir gücü müdür? Soruyu yanıtlamadan önce tork ve beygir gücünün birbirinin alternatifi, birbirini ikame eden kavramlar olmadığını bir kez daha hatırlatalım. Unutmayın, tork ürettiğiniz her an otomatikman beygir gücü de üretirsiniz. Beygir gücü torkun bir niceliğidir.
    Newton’un ikinci yasası der ki, “bir cisim üzerindeki net kuvvet, cismin kütlesi ile ivmesinin çarpımına eşittir.” Bunu formule edersek F = Mx A ile gösterebilir, buradan da A = F/M’i elde ederiz. Yani kuvvetin cismin kütlesine bölümü bize ivmeyi (hızlanmayı) verir. Öyleyse bir arabayı hızlandıran şey, arabanın kütlesi değişmediğine göre, ona etki eden kuvvettir – kuvvetteki artıştır. Yukarıda görmüştük arabamızın motoru da bir kuvvet üretir ve buna tork demiştik,.

    Demek ki, arabayı hızlandıran şey motorun torkudur. ..

    Öyle midir?

    Evet diyenler yanıldı, arabayı hızlandıran kuvvet motor torku değil, arabanın tahrik tekerlerinin tabanında oluşan kuvvettir ve bu iki kuvvet (motor torku ile teker kuvveti) sadece 1. Viteste paraleldir. hiç bir durumda ise aynı değildir. Teker tabanında oluşan itme kuvveti lineerdir ve Newton cinsinden ifade edilir. Motor torku ise açısaldır ve NewtonMetre ile ifade edilir. Bu iki kuvvet arasında bir ilişki vardır. Teker tabanındaki kuvvetin kaynağı motor torkudur ama kendisi değildir. İkisi son kertede farklı şeylerdir. Bunu aşağıda örnekleriyle göreceğiz. Motor şaftını doğrudan tekere bağlasaydık bu iki kuvvet tümüyle paralel olacaktı, ne var ki araya torku ve RPM’i istediğimiz gibi artırıp azaltan bir mekanizma, transmisyonu koyduğumuz için bu iki kuvvet arasındaki ilişki karmaşıklaşır. Yukarıdaki Newton formülüne ( A = F/M) motor torkunu yerleştiremezsiniz çünkü tork NM cinsindendir, oysa formüldeki F Newton cinsinden olmak zorundadır. Örnek vermek gerekirse 1200 kg ağırlığındaki bir aracın 1 G’lik ivme ile hızlanabilmesi için kuvvet ne olmalıdır? F = MA’dan 1200 x 9,81 = 11,772 Newton. Peki bu arabanın maksimum torku 1750 RPM’de 240 NM olsun. Teker tabanında oluşan 11,772 N’luk kuvveti 240 NM’lik motor torku ile nasıl ilişkilendireceğiz? Formüle doğrudan motor torkunu koyamadık çünkü birimler farklı. Gördüğünüz üzere A = F/M formülü motor torku için işlemiyor. Öyleyse motor torku ile tekerlek tabanındaki kuvveti nasıl ilişkilendireceğiz? Onu da “BEYGİR GÜCÜ AKSELERASYON İLİŞKİSİ” başlığı altında inceleyeceğiz.
     
  2. REİS38

    REİS38 SCW Üyesi

    6.334
    1.469
    113
    pek anlamasamda işine yarayan arkadaşlar olacaktır. teşekkürler
     
  3. batum

    batum SCW Üyesi

    453
    115
    43
    güzel paylaım teşekkürler. torku merak ediyorum ama burdan bişey anlamadım anlayanlar süzerse iyi olur :)
     
  4. byalfa

    byalfa SCW Üyesi

    31
    6
    8
    Bu bölümde tork daha örneksel olarak aktarılmaktadır.

    Tork Nedir?
    Tork, motordan tekerleğe iletilen itme(dönme momenti) kuvvetidir. Birimi Nm (Newtonmetre)’dir. Halk ağzıyla otomobilin çekişi olarak da tarif edebileceğimiz tork, kamyon, otobüs, traktör gibi araçlarda çok yüksek değerler almaktadır. Bunun nedeni yük taşıyan araçlarda hız yapmaktan çok çekişe ihtiyaç duyulmasıdır.

    [​IMG]
    Aslında bu kavram fizikte dönme momenti olarak bilinen kuvvet x kuvvet kolu formulünden başka birşey değildir. Yukardaki resimde anahtarla somunun sıkılması gösterilmekte. Burada elle uygulanan kuvvet vida ile somun arasında vidaya paralel yönde bir gerilim ve dairesel yönde moment oluşturmakta. İşte bu momente tork denir. Anahtarın sapı ne kadar uzun olur ve ne kadar geriden tutulabilirse, somun o kadar kolay dönecektir. Otomobilin tekerleklerinde olan da bunu aynısıdır. Tekerleğin çapı küçültülürse tork yükselir ve daha ani tepki veren daha esnek bir sürüş karakteristiğine sahip olunabilir. Tabi bu durumda maksimum sürat düşecektir. Bir yerden kazanılırken bir yerden fire vermek gerekir, bu işin doğasında olan birşeydir.
    Torku ifade eden bir diğer oto terimi de esnekliktir. Aynı devir bandında torku yüksek olan otomobiller ara hızlanmalarda yani sollamalarda örneğin 60km/h hızdan 120km/h hıza ulaşmada daha başarılıdır. Bu da otomobilin esnekliği olarak tanımlanır. Torku yüksek olan bir otomobil özellikle rampa çıkarken fazla devir çevirmeye ihtiyaç duymadan hızını koruyabilir fakat torku az olan otomobil ivmesini koruyabilmek için vites düşürerek hızını artırmak zorundadır.
    Torkun yüksek olması için temel olarak motorun yanma odasında normalden daha kuvvetli bir yanma gerçekleşmesi gerekir. Aynı beygir gücüne sahip bir benzinli motor ile bir dizel motor arasında iki kat tork farkı oluşabilir. Dizel motorlarda yanma odasındaki sıkıştırılan yüksek basınçlı havanın içerisine yine yüksek basınçlı enjektörlerden yakıt püskürtülerek kuvvetli bir yanma elde edilir. Bunun yanında pistonun kurs içerisindeki hareket mesafesinin artması ve buna bağlı olarak piston kolunun uzaması gibi etmenlerden ötürü dizel motorların torkları yüksektir. Fakat dizel motorlar benzinlilere göre fazla devir yapamadıklarından hızlanma değerlerinde pek iç açıcı değerler elde edemezler yani sahip oldukları tork avantajlarını devir düşüklükleri nedeniyle kısmen kaybederler. Bu devir düşüklüğünün nedeni ise, yanma odasına püskürtülen mazotun odacığın belirli bir noktasından başlayarak yayılarak patlamayı oluşturmasıdır. Bu noktada patlamayı kuvvetlendirmek için enjektör basıncını artırarak yakıtı yanma odasına daha hızlı göndermekten başka yapacak fazla birşey yoktur. Benzinli motorlarda ise, birden fazla buji ile farklı noktalarda ateşleme sağlanabilmesinin yanında moleküller arası yanmayı hızlandırıcı partiküllerin yakıta eklenmesiyle yanma verimini artırmak mümkün olmaktadır.
    Yüksek devirli benzin motorları her halükarda en gelişmiş turbo dizel bir motordan dahi ivmelenme anlamında üstündürler. Fakat alt devirlerdeki ani hızlanma yetenekleri sayesinde günlük şehir içi kullanımda dizel motorlar çok keyifli sürüş dinamikleri sunarlar. Bunun nedeni elbette yüksek tork değerleridir. Torku yüksek olan bir aracın gaz pedalına basıldığında insanın sırtını koltuğa yapıştıracak bir hızlanma duygusu yaşatır ve bu da sürüşteki en önemli keyif faktörlerinden birisidir. Fakat hareketin devamında devirler arttıkça bu hissiyatı yaşamak pek mümkün değildir. Benzinli otomobiller ise daha doygun hızlanırlar. Bu nedenledir ki, drag yarışlarında dizel otomobiller genellikle tercih edilmemektedir.
    Bir otomobilin vites kutusunda, daha fazla tork üretmesi veya daha fazla hız yapması arasında tercih yapılabilir. Bu konuda güç ve tork değerleri binek otomobillerde birbirine yakın değerlerde tutulurken örneğin bir jipte tork yönüne kaydırılmıştır. Misal bir binek otomobil 130 HP güç, 160 Nm tork değerine sahipken aynı motorun kullanıldığı bir jip 100 HP güç, 280 Nm tork değerine sahip olabilir. Burada beygir gücü değişmezken kullanılan şanzıman oranlarına bağlı olarak torkta farklılık görülmektedir. Benzer şekilde tekerlek çapı büyük olan traktör gibi araçlarda torkun yüksek olması gerekir çünkü tekerlek çapı büyüdükçe motorun çekişi düşer. İlave olarak motor tipi de tork açısından önemlidir. Sıra tipli motorlar güç üretmeye odaklı olarak üretilirken V tipli motorlar çekişin fazla ve sürekli olması istenen yerlerde yaygın olarak kullanılır.
    Tork Eğrisi
    Otomobilden anlayanların baktığı en önemli ve en iyi yorumlanması gereken teknik veri tork eğrisidir. Aşağıda Volkswagen markasına ait 1.4 TSI ve 1.6 FSI motorlarının tork eğrileri karşılaştırılmalı olarak verilmiştir.

    [/COLOR]
    [​IMG]
    Grafiği yorumlarken ilk başta şu temel bilgiyi bilmek gerekir: “Bir motorun tork eğrisi ne kadar düz bir çizgi şeklinde ilerliyorsa, motor o kadar verimlidir.” Motorun verimli olması kullanılan yakıttan minimum ısıl kayıpla optimum kazanç elde edilebildiği anlamına gelir ki, bu bir motor için en belirleyici kalite faktörlerinin başında gelir.
    Grafikteki her iki motor da benzinlidir. 1.4 litrelik TSI motor 1500 devir seviyelerinden başlayarak 3500 devre kadar aynı tork değerini koruyabilmiştir. Bu demektir ki otomobil bu devir bandında kendinden beklenebilecek en atak(esnek) sürüşü mümkün kılıyor. 1.6 litrelik FSI motor ise, maksimum torkunu 4000 devirde üretmiş ve bu devirden sonra 6300 devirlere kadar fazla bir şey kaybetmeden çekişini korumuş. Atmosferik bir motor için güzel bir değer fakat 4000 devire kadar otomobilin uyuşuk bir tavır sergilemesi hem şehir içi yakıt ekonomisi hem de sürüş keyfi açısından kötü bir durum. Bu motordan performans alınabilmesi için yüksek devirde kullanmak şart, bu da çok yüksek ısıl kayıplarla beraber verimsizliği ve yüksek yakıt tüketimini beraberinde getirir. Peki bu durumda 1.4 TSI motor harika mı? Tabiki değil; onun da 3500 devirden sonra aniden nefesi kesilmeye başlıyor ve FSI motor kadar yüksek devirle motoru çeviremiyor. Sonuç olarak rampada TSI motor FSI’ya rahatlıkla toz yutturacak ve kıyas götürmez şekilde performansını gösterecektir. Düz yolda ise FSI motor, TSI’yı hem hızlanma değeri olarak hem de maksimum sürat anlamında ya geride bırakacaktır. Ama yakıt ekonomisi ve sürüş keyfi açısından TSI motorun tercih edilebilirliği daha fazla. FSI motorun eğrisi grafiğin hiçbir yerinde düz bir çizgi olarak ilerlemediğinden zaten ilk bakışta çok başarılı olmadığı anlaşılıyor. Bu grafikte kırmızı çizgiyle gösterilen TSI motor tork anlamında da güçlü zaten ama bazı grafiklerde tam tersi olur ve eğri tepe gibi olan mavi grafik kırmızının üzerine çıkar. İşte o durumda da düz ilerleyen grafiğe sahip aracı tercih etmek daha mantıklı olacaktır. Maksimum torku az olsa da o torku değişken devir aralığında sürekli üretebilen motor daha başarılıdır.
     
    kfy ve Ziya bunu beğendi.
  5. Lejyoner

    Lejyoner
    Administrator

    8.974
    6.409
    113
    Teşekkürler paylaşım için..
     
  6. feda

    feda SCW Üyesi

    685
    246
    43
    geçen gün bir arkadaşla tanıstım 1.4 tsı leonu var maslak ta bir yerde beygir gücünü 200 yaptırmış ınanamadım sorun çıkartır dedim motoru zorlar dedim hiç bir sorun yok dedi almanyadan özel bir yazılım yaptırmış 1800 tl vermiş ben en fazla 156 beygir olur diye düşündüm adam 200 beygire çıkartmış
     

Sayfayı Paylaş